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Adsorption-desorption model and its application to vibrated granular materials
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We investigate both analytically and by numerical simulation the kinetics of a microscopic model of hard
rods adsorbing on a linear substrate, a model that is relevant for compaction of granular materials. The
computer simulations use an event-driven algorithm that is particularly efficient at very long times. For a small,
but finite desorption rate, the system reaches an equilibrium state very slowly, and the long-time kinetics
display three successive regimes: an algebraic one where the density varies as 1/t, a logarithmic one where the
density varies as 1/ln(t), followed by a terminal exponential approach. The characteristic relaxation time of the
final regime, though incorrectly predicted by mean field arguments, can be obtained with a systematic gap-
distribution approach. The density fluctuations at equilibrium are also investigated, and the associated time-
dependent correlation function exhibits a power law regime followed by a final exponential decay. Finally, we
show that denser particle packings can be obtained by varying the desorption rate during the process.

PACS number~s!: 68.45.Da, 61.43.2j, 64.70.Pf
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I. INTRODUCTION

The packing of granular materials is somewhat parado
cal. A child learns quickly that it is necessary to shake
bucket in order to pack the sand inside, but physicists can
provide a completely satisfactory explanation of the dens
cation process. The absence of a reference model, like
hard-sphere fluid for liquid-state physics or Ising model
phase transitions and magnetism, is at the origin of the s
progress in this field, despite a renewal of interest in rec
years@1#.

To capture the main features of the packing mechani
the experimental study of a model system as simple as
sible can help in building a reference theory. In this spi
Knight et al. @2# have considered a system of monodispe
spherical beads. The packing process is realized by pla
beads in a column that is tapped periodically with a giv
intensity. In a first series of experiments, they demonstra
that the density increases monotonically with the numbe
taps for various intensities of tapping. The very slow
crease of density was analyzed, and a formula expressing
density in terms of the inverse of the logarithm of the nu
ber of taps was shown to be more accurate than any of
other suggestions@2#. Such behavior is common to mode
whose geometric exclusion effects dictate the kinetics
densification, i.e., models in which addition of new partic
is exponentially limited by the inverse of the free volum
@3–7#.

In a second series of experiments, Nowaket al. @8,9#
showed the presence of reversible/irreversible cycles.
beads in an initially loosely compacted state were vibra
for fixed periods with a sequence of increasing vibratio
intensity, causing the density to increase monotonically. T
sequence was then reversed so that the powder was vib
with decreasing intensity. The density, however, continu
to increaseshowing that the initial branch is irreversible
When the initial sequence of increasing vibration was
PRE 611063-651X/2000/61~5!/5429~10!/$15.00
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peated, the second branch was retraced confirming that
reversible.

In the same experiments, Nowaket al. @8,9# monitored
the power spectrum of the density fluctuations around
steady state for different values of the tapping strength
two-step spectrum was observed characterized by two
quencies that both increase with increasing tapping stren
To account for the slow kinetics of compactification, the e
istence of a ‘‘reversible’’ steady state, and the fluctuati
power spectrum, they proposed a simple adsorpti
desorption or ‘‘parking lot’’ model.

The model describes the kinetics of densification o
given slice or layer of the material, perpendicular to the ta
ping force.~In the experiments, the tapping force is vertic
opposite to gravity.! Note that in the bulk region of the vi
brated material, all slices are equivalent, as shown in R
@8# and@9#. As a result of a tapping event, particles leave t
layer essentially at random. Densification proceeds w
particles fall back into the layer under the influence of gra
ity, and the system reaches a new state of mechanical st
ity where particles are at rest. This is described in the mo
by a desorption/adsorption process, the ratio of desorptio
adsorption rates being an increasing function of the tapp
strength. Furthermore, no diffusion is allowed within a lay
which ensures that the particles are jammed in the absenc
external forces. Of course, this approach accounts for
interlayer and mechanical stability effects only in an effe
tive way. The physical situation corresponds to a tw
dimensional layer. However, the same qualitative featu
are expected in the one- and two-dimensional versions of
model.

Partial analyses of this model have already been repo
@10–12#. We present here a comprehensive description of
kinetics, including the final exponential regime and of t
fluctuations around the steady state~equilibrium!. We first
present the model in Sec. II. We detail in Sec. III the spec
algorithm that we have developed for enhancing the f
quency of rare events in the late stages of the densifica
5429 ©2000 The American Physical Society



B
f

of
n;
A

io
on
n
y
io
th

d
th
y
.

is
o
-
io

-
a
lin

a

i-
o
n-

he
nd

iti
e

s
t

he
y

he
e

en

e
le.
de-

that
les

x-

n

-

dra-

on
at

ely
ew
ve

gate
rily
m
m

uld
rily

eth-

en
tem.
is

be

his

5430 PRE 61J. TALBOT, G. TARJUS, AND P. VIOT
process. In Sec. IV we study the densification kinetics.
using a gap distribution analysis we derive an expression
the time of relaxation towards equilibrium and the form
the gap distribution function in the limit of small desorptio
the results compare very well with the simulation data.
short account of this derivation has been given in Ref.@13#.
In Sec. V, the time-dependent density-density correlat
function is studied in the equilibrium state. The correlati
function displays two well-separated timescales, correspo
ing to two relaxation steps, and this can be interpreted b
simple model. In Sec. VI, we show that a faster densificat
can be obtained by changing the adsorption rate during
process.

II. MODEL

In the adsorption-desorption model, particles are place
a D-dimensional space at randomly selected positions wi
constant ratek1 . If the trial particle does not overlap an
previously adsorbed particle, the new particle is accepted
addition, all adsorbed particles are subject to removal~de-
sorption! at random with a constant ratek2 . The one-
dimensional version of the model, in which the substrate
line and the objects are hard rods, has been solved in s
limiting cases. Whenk250, the adsorption is totally irre
versible and the process corresponds to a one-dimens
~1D! random sequential adsorption~RSA! for which the ki-
netics are known exactly@14#. Without a relaxation mecha
nism, this process is driven towards a nonequilibrium st
and the long-time kinetics are given by an algebraic sca
law, r`2r(t);1/t, with r`.0.747 . . . ~when the substrate
is empty at the beginning of the process!. When k150,
starting with any configuration of particles, one obtains
analytical solution for this uniform desorption process@15#.
The limit k2→01, which allows a small but nonzero poss
bility of rearrangement of the particles on the line, leads t
final density equal to 1. It is worth noting the finite disco
tinuity between the final density of this case (k2→01) and
the RSA jamming limit (k250). Moreover, the final density
is independent of the initial configuration of particles on t
line, whereas the jamming limit for the RSA process depe
strongly on the initial state of the line. Fork2→01, accurate
descriptions have been obtained@10,11#. In this case, the
process cleanly divides into two sub-processes. The in
phase consists of an irreversible adsorption and it is follow
by an infinite sequence of desorption-adsorption event
which a rod detaches from the surface and the gap tha
created is immediately filled by one or two new rods. T
latter possibility causes the system to evolve continuousl
the close-packed state withr51 as @10,11# 12r(t)
.1/ln(t) where t now represents a rescaled time. For t
general case, where bothk1 andk2 are nonzero, a complet
solution is not available.

The properties of the adsorption-desorption model dep
only on the ratioK5k1 /k2 . A large value ofK then corre-
sponds to a small desorption rate. If time is expressed
units of k1

21 , the densification kinetics is given by

dr

dt
5F~ t !2

r

K
, ~1!
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whereF(t), the insertion probability, is the fraction of th
substrate that is available for the insertion of a new partic
The presence of a relaxation mechanism, i.e., competing
sorption and adsorption with an equilibrium constantK, im-
plies that the system eventually reaches a steady state
corresponds to an equilibrium configuration of hard partic
with req5KFeq(req), where req denotes the equilibrium
density. At equilibrium, the insertion probability is given e
actly by

Feq~r!5~12r!exp@2r/~12r!#. ~2!

Inserting Eq.~2! in Eq. ~1! leads to the following expressio
for the equilibrium density:

req5
Lw~K !

11Lw~K !
, ~3!

whereLw(x) ~the Lambert-W function! is the solution ofx
5yey. In the limit of smallK, the isotherm takes the Lang
muir form, req;K/(11K), while for large K, req;1
21/ln(K). At small values ofK, equilibrium is rapidly ob-
tained, but at large values the densification process is
matically slowed.

III. SIMULATION ALGORITHM

A naive method of simulating the adsorption-desorpti
process would attempt to randomly insert a new particle
fixed time intervals. This approach, however, is extrem
inefficient at high densities since most attempts to add n
particles are unsuccessful after an initial period. We ha
developed a general algorithm that enables us to investi
in detail the kinetics of the adsorption process at arbitra
long times and for arbitrarily large values of the equilibriu
constantK. Instead of using a fixed time step, the algorith
is based on adsorption or desorptionevents. In this section
we describe the general features of the algorithm that co
be to simulate an adsorption-desorption process of arbitra
shaped particles in any dimension. Later, we detail the m
odology for the hard-rod system.

The total rate of adsorption and desorption events is

Rtot~ t !5F~ t !1r~ t !/K. ~4!

The quiesence, or waiting time, is the time interval betwe
any two successive events that alter the state of the sys
Let F(t) denote the probability that the waiting time
greater thant. Since successive events are considered to
independent,

F~t1Dt!5F~t!@12RtotDt1O~Dt2!#. ~5!

Taking the limitDt→0 we obtain

F~t!5exp~2Rtott!. ~6!

A uniformly distributed random number, 0,j1,1, may be
used to sample a random waiting time consistent with t
distribution:

t52 ln~j1!/Rtot . ~7!
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Once the quiesence time has been selected, the nature o
event is determined stochastically by defining

r d~ t !5
r~ t !/K

Rtot~ t !
~8!

and choosing a second uniformly distributed random nu
ber, 0,j2,1. If j2,r d(t) the event at timet is a desorption
and a randomly selected particle is removed from the syst
If j2.r d(t) the event is an adsorption and a new particle
placed randomly in the available surface. We have valida
the method by applying it to the Langmuir equation whe
F512r/rmax and the kinetics, as well as the isotherm, a
known exactly. This method is quite general and can appl
a range of adsorption-desorption processes.

In the simulation, the initial state of the system is an
terval of lengthL ~measured in rod lengths! bounded by two
immovable rods centered at positionsx0521, xN115L
11. For an arbitrary configuration ofN additional rods,
whose centers are located at$xi ,i 51, . . . ,N%, the total
available length is known exactly:L05( i 50

N11max(xi112xi

22,0). At each step of the simulation, the total rate of a
sorption and desorption events is determined fromR5L0
1N/K. A waiting time is sampled from the exponenti
waiting time distribution using Eq.~7! and the type of even
is decided with Eq.~8!. If the event is adsorption, a new
particle is placed in the available length. The probability th
a particular gap is occupied is equal to its available len
divided by the total available lengthL0. Thus, a random
numberj3 is generated and the position of the particle on
available length isj3L0, which means that the gap betwee
particles j and j 11 is occupied wherej is defined by the
following equation

(
i 50

j 21

max~xi 112xi22,0!,j3L0,(
i 50

j

max~xi 112xi22,0!.

~9!

Note that the adsorption event is uniform and is alwa
accepted. If the event is desorption a particle is selec
at random and removed from the surface. Note that
desorption probability is independent of the length of tim
that the particle has been on the surface. The available
is updated; it always decreases~increases! following an
adsorption ~desorption! event. The simulation procedur
thus generates a sequence of configurati
(t1 ,N1 ,L01),(t2 ,N2 ,L02), . . . and one knows the state o
the system at an arbitrary time,t. To insure good statistics
several thousands of independent simulations must be ru
each value of the desorption rate. We used system lengthL,
from 400 to 5000.

IV. GAP DENSITY APPROACH

The adsorption-desorption model can be described
terms of gap distribution functions. The one-gap distribut
function,G(h,t), represents the density of voids of lengthh;
the time evolution ofG(h,t) is given by
the
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]G~h,t !

]t
52H~h21!~h21!G~h,t !

12E
h11

`

dh8G~h8,t !2
2

K
G~h,t !

1
H~h21!

Kr~ t ! E
0

h21

dh8G~h8,h212h8,t !,

~10!

whereG(h,h8,t) is the two-gap distribution function assoc
ated with the probability of finding twoneighboringgaps
~separated by one particle! of lengthh andh8, andH(x) is
the Heaviside step function@H(x)51 for x.1, H(x)50
otherwise#. The first two terms on the right-hand side of E
~10! correspond to loss and gain terms due to adsorp
while the remaining two are due to desorption. Similarly, t
time evolution ofG(h,h8,t) is given by

]G~h,h8,t !

]t
52@H~h21!~h21!

1H~h821!~h821!#G~h,h8,t !

1E
h11

`

dh9G~h9,h8,t !1E
h811

`

dh9G~h,h9,t !

1G~h1h811,t !2
3

K
G~h,h8,t !

1
H~h21!

Kr~ t ! E
0

h21

dh9G~h9,h212h9,h8,t !

1
H~h821!

Kr~ t ! E
0

h821
dh9G~h,h8212h9,h9,t !,

~11!

where G(h,h8,h9,t) is the three-gap distribution function
The kinetics of the process is thus given by an infinite hi
archy of equations involving an infinite set of multi-gap di
tribution functions.

The quantities of interest can be expressed in terms
integrals of the one-gap distribution function. In particula
the insertion probabilityF(t) is given by

F~ t !5E
1

`

dh~h21!G~h,t !, ~12!

and we have the following sum rules:

r~ t !5E
0

`

dhG~h,t !, ~13!

and

12r~ t !5E
0

`

dh hG~h,t !. ~14!

@One also has r(t)G(h,t)5*0
`dh8G(h,h8,t)

5*0
`dh8G(h8,h,t) and similar integrals for higher-orde
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5432 PRE 61J. TALBOT, G. TARJUS, AND P. VIOT
terms.# The steady-state solution of Eq.~10! is known and
corresponds to the equilibrium hard-rod system with a g
distribution function given by@10,11#

Geq~h,r!5
r2

12r
expS 2

r

12r
hD , ~15!

and all higher-order distribution functions satisfying the fa
torization property,

Geq~h1 ,h2 , . . . ,hn ,r!

5Geq~h1 ,r!Geq~h2 ,r!•••Geq~hn ,r!. ~16!

In order to find a solution for the kinetics of the proces
one must truncate the hierarchy by means of a closure an
The simplest closure is provided by an adiabatic~mean-field!
treatment. There, one assumes that, at any densityr(t), the
structure of the adsorbate, as characterized by the gap d
bution functions, is that of an equilibrium system at dens
r(t).

V. DENSIFICATION KINETICS „AT CONSTANT Kš1…

A. A succession of regimes

We focus here on the small desorption limit (K@1). For
an initially empty line, there are three different success
kinetic regimes. The first stage is dominated by adsorp
events and the process displays an RSA-like behavior, c
acterized by a 1/t power law dependence. Forr(t)>0.7,
adsorption becomes slower and desorption can no longe
ignored, which allows particle rearrangements on the l
and, eventually, insertion of additional particles. The den
fication mechanism requires the rearrangement of an incr
ing number of particles in order to open a hole large eno
for the insertion of an additional particle. The process
similar to what occurs in the limitk→01, and the kinetics is
dominated by a 1/ln(t) behavior@10,11#. For large but finite
values ofK, this densification regime continues until the de
sity is very close to the equilibrium~steady-state! value,
req(K). In the final regime, the desorption term becom
comparable to the adsorption term, and an exponential
proach to equilibrium is observed. Figure 1 illustrates
three successive regimes.

B. Exponential approach to equilibrium

The exponential regime is illustrated in Fig. 2~a!. In an
adiabatic ~mean-field! treatment the insertion probability
F(t), satisfies an equation similar to Eq.~2! with r(t) in
place of req . Denoting dr(t)5r(t)2r` , with r`

5req(K), one obtains from Eq.~1!, at first order in density,

d

dt
dr52GMF~K !dr1O~dr2! ~17!

with

GMF~K !5
@11Lw~K !#2

K
, ~18!

. ln~K !2/K when K is large, ~19!
p

-

,
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which is equivalent to a relaxation time given byK/ ln(K)2

for largeK.
In Fig. 2~b!, the relaxation rate is plotted as a function

K: the dashed curve gives the mean-field prediction,
~19!, and open circles correspond to the best exponentia
to the simulation results. It is evident that the mean-fie
analysis gives a poor estimate of the relaxation rate for la
K. This failure can be understood by noting that the me
field assumption leads to a characteristic time for the re
rangement ofF of the orderK/ ln(K)2, i.e., much smaller
than K, the characteristic time for desorption. Since in t
absence of surface diffusion process, significant rearran
ment can only occur on a timescale longer thanK the system
is unable to adjust rapidly enough in order to change sign
cantly the available surface function on a timescale of or
K/ ln(K)2. In Fig. 3, we display the insertion probability
F(r), for several large values ofK; it is worth noting thatF
first follows the RSA curve until it reaches a value close
the equilibrium one at which point it plateaus and evolv
very weakly towards equilibrium. The process clearly de
ates from the adiabatic description in which the insert
probably is given, at all densities, by the equilibrium curv
Feq(r).

We now turn to a description in terms of the gap dist
bution approach. To obtain the leading term in the expon
tial approach towards equilibrium, whenK is very large~but
finite!, we assume that, as for the steady state~or equilib-
rium!, uG(h,t)u;exp(2Ph), with P; ln K;(12r)21 @see
Eqs.~15! and~3!, whenK is very large#. As a consequence
if one definesrn(t)5*n

n11G(h,t)dh and Fn(t)5*n
n11(h

21)G(h,t)dh, thenrn;Fn;K2n, so that if one looks for

FIG. 1. Linear-logarithmic plot of the adsorbed density as
function of time for a large value ofK (K55000). The process is
characterized by three slow kinetic regimes:~i! RSA-like regime
whose final stage is described by a 1/t behavior,~ii ! 1/ln(t) regime,
and ~iii ! exponential approach towards equilibrium.
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the dominant behavior in 1/K, it is sufficient to consider the
first intervals inh. As in the adiabatic approximation, on
can expand the gap densities in power ofdr(t) and keep
only the linear term which gives rise to the exponential d
cay. In the final regime, where the density is close to
steady state, we first assume that the deviation of the
distribution function from its equilibrium form,dG(h,t)
5G(h,t)2Geq(h), can be expressed as an expansion
dr(t) where only the first term is kept. Let us then denot

A~h!5r`

] ln G~h,r!

]r U
r`

~20!

FIG. 2. ~a! Final exponential approach of the densityr to its
equilibrium valuereq for two large values ofK. ~b! Relaxation rate
for the approach to equilibriumG versusK. Upper curve: prediction
from mean-field approximation, Eq.~19!. Dotted curve: leading
term of Eq.~32!. Full curve, Eq.~A17! . Open circles: best expo
nential fit to the numerical simulations.
-
e
ap

n

and

A~h,h8!5r`

] ln G~h,h8,r!

]r U
r`

. ~21!

After inserting Eq.~20! in Eq. ~10! A(h) can be rewritten for
0,h<1 as

22g

K
A~h!5

2P`

K E
h

1`

dh8e2P`(h82h)A~11h8!, ~22!

where P`5r` /(12r`) is the dimensionless equilibrium
pressure forr`5req and

g5KG52K
d

dt
dr~ t !/dr~ t !ur`

. ~23!

From Eqs.~1! and ~12!, one obtains

g512P`
2 E

0

`

dhhe2P`hA~11h! ~24!

whereas the sum rules in Eqs.~13! and ~14! give, respec-
tively,

P`E
0

`

dhe2P`hA~h!51 ~25!

2P`E
0

`

dhhe2P`hA~h!51. ~26!

When integrating the two sides of Eqs.~22! between 0 and
1, one obtains

FIG. 3. The insertion probabilityF as a function of densityr
for various large values ofK (K5100,500,1000,5000). The dashe
curve corresponds to a process without desorption~RSA process!
and the dotted curve corresponds to the equilibrium insertion p
ability, Eq. ~2!.
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~22g!52P`
2 E

0

1

dhhe2P`hA~11h!1O~1/K !. ~27!

Combining Eq.~24! with Eq. ~27! yields g5O(1/K). Thus,
the relaxation rateG goes essentially as 1/K2 instead of the
1/K dominant behavior predicted by the mean-field tre
ment. In order to have a more explicit expression forg and
G, it is necessary to calculate the integral on the right-ha
side of Eq.~24! to O(1/K2)

~22g!H 12
P`

2

K F E
0

1

e2P`hA~11h!1A~1!G J
5222Fg2

P`
3

K E
0

1

~h11!e2P`hA~21h!G1O~1/K2!,

~28!

which leads to

gK52P`FA~0!1P`A~1!2P`
2 E

0

1

~h11!e2P`hA~21h!G
1O~1/K !. ~29!

An explicit expression forgK, Eq. ~29! thus requires the
knowledge of the gap distribution function for 3.h.1. The
kinetic equation for the gap distribution function whenh
.1 is then rewritten by inserting Eqs.~20! and ~21! in Eq.
~10!, which gives

S h211
22g

K DA~h!52~h21!

1E
0

h21

dh8A~h8,h212h8!

1
2P`

K E
h21

`

dhe2P`(h82h)A~11h!.

~30!

Combining Eq.~29! and Eq.~30! for h51, one finally gets

gK52P`FA~0!2P`
2 E

0

1

dhhe2P`hA~21h!G1O~1/K !.

~31!

Since the system evolves close to equilibrium, we furt
assume that the factorization property for the two-gap dis
bution function is valid toO(1/K), i.e., A(h,h8)5A(h)
1A(h8)1O(1/K) @16#. Equations~30! and ~22! then be-
come a closed set of equations forA(h) to O(1/K). The
solution is given in the Appendix, as well as the expli
expression forG(K)5g/K, Eq.~A17!. As an illustration, the
leading terms ofG(K) in powers of ln(K) are obtained as

G.2
~ ln K !3

K2
24

~ ln K !2

K2
12

~ ln K !

K2
1OS 1

K2D . ~32!

The prediction of Eq.~A17!, shown as the full curve in Fig
2~b!, gives a good agreement with the results obtained fr
-

d

r
i-

m

an exponential fit to the simulation data, whereas the me
field prediction fails completely~dashed curve! @the dotted
curve corresponds to the first term of the right hand-side
Eq. ~32!#.

VI. FLUCTUATIONS AROUND EQUILIBRIUM

For times much larger than the relaxation time, the d
sity no longer evolves~on average!, but fluctuates around its
equilibrium value. Note that in this regime, the fluctuatio
dissipation theorem and the time translational invariance
both valid. We have calculated the time-dependent corr
tion function C(t) of the density fluctuations,dr(t)5r(t)
2r` , around the equilibrium state. Starting from the 22
time correlation function,

C~ t81t,t8!5
^r~ t81t !r~ t8!&2^r~ t81t !&^r~ t8!&

^r~ t8!2&2^r~ t8!&2
,

~33!

we have numerically verified that whent8@1/G, C(t8
1t,t8) becomes time translationnally invariant, i.e.,C(t8
1t,t8)5C(t). ~Conversely, when 1!t8!1/G, one observes
aging phenomena@17#, but we postpone the discussion
this phenomena to a future publication.! Because of the very
long relaxation time, we found that the calculation of t
correlation function is more efficient by using Eq.~33! in-
stead of taking the usual time average on a single sys
@18#. Results from the simulation are shown in Fig. 4 for tw
large values ofK. At short and intermediate times, the dec
of C(t) is nonexponential, whereas at long times the kinet
follows an exponential decay. The two regimes, or relaxat
steps, can be interpreted as follows: the first consists o
‘‘fast’’ adsorption-desorption process without appreciab
densification of the system, whereas the second corresp
to the linear-response regime and, as predicted by Onsag
regression hypothesis, it shows the same final expone
dependence as the final approach ofr(t) towardsr` in the
densification process. In this second relaxation step,C(t)
;e2Gt whereG is given by Eqs.~32! and ~A17!.

Close to equilibrium and for large values ofK, the adsorp-
tion and desorption events can be considered as spat
uncorrelated, and the system can be represented as a s
independent gaps in which a particle is adsorbed or not. T
assumption does not account for rearrangements that occ
long times, but is valid for short times. When a particle
adsorbed, the gap is characterized by the distributiongeq(h),
which is the distribution probability of finding a particle suc
the total length of right and left gap is equal toh, i.e.,

geq~h!5
1

r`
E

0

h

dh8Geq~h8!Geq~h2h8!

5r`P`
2 h exp~2P`h!. ~34!

Once the particle has desorbed, the gap is characterize
the distributionGeq(h11). The two distributions are calcu
lated at equilibrium and their ratio is given exactly by:

Geq~h11!

geq~h!
5

1

Kh
. ~35!
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For a given gap of length (h11), we have a two-state
~particle-hole! stochastic process in which the rates, asso
ated to desorption and adsorption, respectively, are 1/K and
h. The average probability for having a particle in the gap
equal to

P~h!5
hK

11hK
. ~36!

FIG. 4. Equilibrium density-density correlation functionC(t)
versus time for~a! K5500 and~b! K51000. The inset in the uppe
right corner displays the first step in the decay of the correla
function ~full curve! as well as the predicted short-time formul
Cshort(t), Eq. ~41! ~dashed curve!. The other inset shows the expo
nential decay ofC(t) at long times on a logarithmic-linear plot.
i-

s

For a given gap of length (h11), the~unnormalized! corre-
lation function of the density fluctuationsC̃h(t) due to the
two-state stochastic process is given by@20#

C̃h~ t !5
P~h!

~11hK!
exp@2~1/K1h!t#. ~37!

Assuming that the adsorption-desorption events giving
to the two-state process only seldom affect simultaneou
two neighboring particles, one can write the~unnormalized!
correlation function as a superposition of correlation fun
tions occurring in parallel in the different gaps, weighted
the distributiongeq(h), i.e.,

C̃short5E
0

`

dhgeq~h!C̃h~ t ! ~38!

.
r`P`

2

K

exp~2t/K !

~ t1P`!
. ~39!

At equilibrium, the variance of the density fluctuations c
be calculated exactly@21#,

^~dr!2&5r`~12r`!2, ~40!

so that, the normalized correlation functionC(t) at short
times,Cshort , can be written as

Cshort~ t !.
P`

2

K~12r`!2

exp~2t/K !

~ t1P`!
, ~41!

which reduces to a power law, 1/t, when ln(K)!t!K. This
result is equivalent to the ln(v)-behavior already predicted
along similar lines similar by Kolanet al. @19#. The insets in
Figs. 4~a! and 4~b! illustrate the excellent agreement betwe
Eq. ~39! and the simulation data.

It is worth noting that the 1/t behavior is reminiscent o
the pure RSA asymptotic regime, where it occurs as a c
sequence of the filling of small isolated pieces of the av
able fraction of the line, whose lengths go to zero whet
→`. With similar arguments, one thus expects to have
higher dimensions at21/D behavior, leading to anv (121/D)

power-law dependence for the power spectrum. In particu
this predicts a power lawv21/2 for D52, which is compat-
ible with the experimental data in vibrated granular me
@9#. In dimensions higher than 1, our prediction differs fro
that of Kolanet al. @19# since their analysis leads to a 1/v
dependence in the power spectrum. A numerical study of
two-dimensional version of the adsorption-desorption mo
should settle this point.

VII. DENSIFICATION REGIME AND MULTISTEP
PROCESS

The very slow-exponential approach to equilibrium wi
G(K)5O(1/K2) when K is very large implies thatF(r)
increases withr when r is sufficiently large~see Sec. V B
and the Appendix!. Since in the first~RSA-like! regime
F(r) decreases, there always exists a densityrm where
]F(r)/]rurm

50. Figure 5 displays a log-log plot ofF as a
function of time for various values ofK. One notices~i! that

n
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rm is an increasing function ofK and ~ii ! that the minimum
of F is always very close but smaller than the equilibriu
value, Feq(K), and smaller thanr/K, which is due to the
fact that the density is an increasing function of time.

In Fig. 6, the density is plotted as a function of time f
different values ofK. The curves on the left part of the figur
correspond to an adiabatic process where the available
face function is replaced by the equilibrium formula, Eq.~2!,
and which corresponds to a process where rapid diffusion
the substrate allows an instantaneous equilibration after e
desorption and adsorption event. For all values ofK, the
adiabatic process is much faster than the correspon
adsorption-desorption model process. Moreover, for an a
batic process, the density is at all times always a monot
cally increasing function ofK. For the adsorption-desorptio
model, on the other hand, the density isnot always mono-
tonic in K. In Fig. 6, for example, the system withK5500

FIG. 5. Log-log plot of the insertion probabilityF as a function
of time for various large values ofK (K5100,500,1000,5000).
Note that forK.100, F displays a minimum that is smaller tha
the equilibrium value~dotted lines!.

FIG. 6. Linear-log plot of the density versus time for differe
values ofK. The left curves correspond to the adiabatic proce
The right curves correspond to the adsorption-desorption mo
Notice that in the latter case the curves for different values oK
always cross, a phenomenon absent in the adiabatic process.
ur-

n
ch

ng
a-
i-

has a higher density than the system withK51000 for 4
& ln(t)&8. The existence of a minimum inF is a sufficient
condition for this phenomenon. It follows thatfor a given
finite time, the densification can be made more efficient
changing the desorption rate during the process. Figur
compares the densities obtained by using either a sin
value ofK51000 or a sequence of varyingK, starting from
1000 att50, passing through a minimum, and finishing
the same valueK51000 whent51000. One clearly ob-
serves that a larger final density is reached with the multis
process. Such a phenomenon, which is also the source o
reversible-irreversible cycles observed by Nowaket al. @9#,
has been already observed and quantitatively analyzed i
irreversible adsorption model@15#. However, the determina
tion of the optimum densification strategy, which has sign
cant applications to vibratory compaction of granular ma
rials, is still an open problem.
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APPENDIX: SOLUTION FOR THE GAP DISTRIBUTION
FUNCTION IN THE LINEAR RESPONSE REGION

For convenience, we introduce the notationB(h)5A(h)
21, B(h,h8)5A(h,h8)22, etc. For 0<h<1, by taking
into account thatg5O(1/K), Eq. ~22! can be reexpressed a

FIG. 7. Density increase over 1500 time units for a process w
a single value ofK (K51000) and for multistep process in whic
the sequence ofK is shown on a linear-logarithmic plot in the inse
~after t51000, K stays constant!. Note the large enhancement o
packing efficiency in the latter process. This effect is absent in
adiabatic approximation where the density is a monotonically
creasing function ofK.
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B~h!e2P`h2B~1!
P`

K
5P`E

0

1

dh8e2P`h8B~11h8!

1O~e2P`h/K !, ~A1!

and for larger gaps, Eq.~30! can be rewritten forh>0, as

S h1
2

K DB~11h!5E
0

h

dh8B~h8,h2h8!

1
2P`

K
eP`hE

h

`

U`dh8e2P`h8B~21h8!

1O~1/K2!. ~A2!

Assuming that the factorization property is valid to
O(1/K), i.e.,

B~h,h8!5B~h!1B~h8!1
C~h,h8!

K
1O~1/K2!, ~A3!

with 0<h<1, andO(1/K) or O(1/K2) designate functions
that are uniformly of order 1/K or 1/K2 on the interval@0,1#,
we can derive from Eq.~A2!

S h1
2

K DB~11h!22E
0

h21

dh8B~h8!

5
1

K F E
0

h

dh8C~h8,h2h8!

12P`E
h

`

dh8e2P`(h82h)B~21h8!G1O~1/K2!,

~A4!

and

~11h!B~21h!22E
0

11h

dh8B~h8!5O~1/K !. ~A5!

Whenh@2/K, Eq. ~A4! simplifies to

hB~11h!22E
0

1

dh8B~h8!5O~1/K !. ~A6!

Deriving Eq.~A6! with respect toh and inserting the resul
in Eq. ~A1!, one gets the following differential equation,

1

P`

d2

dh2
@hB~11h!#2

d

dh
@hB~11h!#12@hB~11h!#

5O~1/K ! ~A7!

with 1>h@2/K, whose solution is

B~11h!5b~22P`h!1cF2
~12P`h!e2P`(12h)

P`~h12/K !

1~22P`h!e2P`E
0

h

dh8
eP`h8

h812/K
G , ~A8!
where b and c are constants and 1>h@2/K. The corre-
sponding solution forB(h) is then

B~h!5b~12P`h!1cFe2P`(12h)

1~12P`h!e2P`E
0

h

dh8
eP`h8

h812/K
G . ~A9!

It is important to stress that the above equations give
solution only whenh>2/K. To satisfy Eqs.~A1! and ~A3!
when h;2/K or smaller, one must include inB(11h) an
additional component that is aO(1/K) whenh@2/K and is
non negligible only whenh;2/K. The full solution for 0
<h<1 is then obtained as

B~11h!5b~22P`h!1cF2
~12P`h!e2P`(12h)

P`~h12/K !

1~22P`h!e2P`E
0

h

dh8
eP`h8

h812/K
G1

d

K~h12/K !

1O~1/K !. ~A10!

It is easy to verify that Eq.~A9! is still the full solution to a
O(1/K) for 0<h<1 and that, from Eq.~A5!, the solution
for B(21h), 0<h<1, is equal to

B~21h!5
1

~11h! H B~2!1bh~42P`h!

2
c

P`
F ~32P`h!e2P`(12h)

1@224P`h1~P`h!2#e2P`E
0

h8 eP`h8

h812/K
G

1O~1/K !J . ~A11!

The constantsb, c, d, andB(2) are determined by the vari
ous sum rules as well as by the condition, which comes fr
the structure of the hierarchy of kinetic equations, thatB(h)
is a piecewise continuous function, namely,

B~1!52b2
c

2
1

d

2

5b~12P`!1c@11~12P`!e2P`Ei~P`!#1O~1/K !,

~A12!

B~2!5b~22P`!1cF2
1

P`
11~22P`!e2P`Ei~P`!G

1O~1/K !, ~A13!

whereEi(x)5ex/x1ex*0
`dt exp(2t)/(x2t)2.

The result can be expressed as

B~0!5b5P`11 ~A14!
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B~1!5~P`11!F2~P`21!12~P`11!

3
~12P`F1

`!@11~12P`!F i
`#

11~12P`!~F1
`1F i

`!2P`~22P`!F1
`F i

`G
~A15!

B~2!5~P`11!F22P`12
~P`11!

P`

3
~12P`F1

`!@P`211P`~22P`!F i
`#

11~12P`!~F1
`1F i

`!2P`~22P`!F1
`F i

`G ,

~A16!

where we have introduced the notationF i
`5e2P`Ei(P`)

and F1
`5eP`E1(P`) with E1(x)5*1

`dte2xt/t. The values
of c andd can be trivially derived from the above equation

The relaxation rateG5gK can be obtained by insertin
the above solution into Eq.~29!, which leads to
.R

i,

R.

.R

.R
.

GK25gK52P`~11P`!2
12U`

11U`
~A17!

with

U`5
F1

`1F i
`22P`F1

`F i
`

~12P`F1
`!~12P`F i

`!
. ~A18!

WhenP`→`, one has

F1
`.

1

P`
F12

1

P`
1

2

P`
2

1OS 2

P`
3 D G , ~A19!

F i
`.

1

P`
F11

1

P`
1

2

P`
2

1OS 2

P`
3 D G . ~A20!

Inserting Eqs.~A19! and ~A20! in Eqs. ~A18! and ~A17!
leads to Eq.~32!.
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