PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Adsorption-desorption model and its application to vibrated granular materials
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We investigate both analytically and by numerical simulation the kinetics of a microscopic model of hard
rods adsorbing on a linear substrate, a model that is relevant for compaction of granular materials. The
computer simulations use an event-driven algorithm that is particularly efficient at very long times. For a small,
but finite desorption rate, the system reaches an equilibrium state very slowly, and the long-time kinetics
display three successive regimes: an algebraic one where the density varigsadeddrithmic one where the
density varies as 1/Itj followed by a terminal exponential approach. The characteristic relaxation time of the
final regime, though incorrectly predicted by mean field arguments, can be obtained with a systematic gap-
distribution approach. The density fluctuations at equilibrium are also investigated, and the associated time-
dependent correlation function exhibits a power law regime followed by a final exponential decay. Finally, we
show that denser particle packings can be obtained by varying the desorption rate during the process.

PACS numbgs): 68.45.Da, 61.43:j, 64.70.Pf

[. INTRODUCTION peated, the second branch was retraced confirming that it is
reversible.

The packing of granular materials is somewhat paradoxi- In the same experiments, Nowat al. [8,9] monitored
cal. A child learns quickly that it is necessary to shake athe power spectrum of the density fluctuations around the
bucket in order to pack the sand inside, but physicists cannateady state for different values of the tapping strength. A
provide a completely satisfactory explanation of the densifitwo-step spectrum was observed characterized by two fre-
cation process. The absence of a reference model, like thguencies that both increase with increasing tapping strength.
hard-sphere fluid for liquid-state physics or Ising model forTo account for the slow kinetics of compactification, the ex-
phase transitions and magnetism, is at the origin of the sloustence of a “reversible” steady state, and the fluctuation
progress in this field, despite a renewal of interest in recenower spectrum, they proposed a simple adsorption-
years[1]. desorption or “parking lot” model.

To capture the main features of the packing mechanism, The model describes the kinetics of densification of a
the experimental study of a model system as simple as po&iVen slice or layer of the material, perp.endlcular_to the. tap-
sible can help in building a reference theory. In this spirit,PiNg force.(In the experiments, the tapping force is vertical,
Knight et al. [2] have considered a system of monodisperséPPOSite to gravity. Note that in the bulk region of the vi-

spherical beads. The packing process is realized by placi ated material, all slices are equivalent, as _shown in Refs.
bgads in a column thgt is ta%;?ed periodically with );%ive ]and[9]. As a result of a tapping event, particles leave the

intensity. In a first series of experiments, they demonstrateIF)ayer essentially at random. Densification proceeds when

that the density i tonically with th b articles fall back into the layer under the influence of grav-
at the density increases monotonicaily wi € number o ty, and the system reaches a new state of mechanical stabil-

taps for various intensities of tapping. The very slow in-jv \yhere particles are at rest. This is described in the model
crease of density was analyzed, and a formula expressing thy 5 desorption/adsorption process, the ratio of desorption to
density in terms of the inverse of the logarithm of the NUM-a4sorption rates being an increasing function of the tapping
ber of taps was shown to be more accurate than any of thgrength. Furthermore, no diffusion is allowed within a layer,
other suggestionf2]. Such behavior is common to models which ensures that the particles are jammed in the absence of
whose geometric exclusion effects dictate the kinetics okxternal forces. Of course, this approach accounts for the
densification, i.e., models in which addition of new particlesinterlayer and mechanical stability effects only in an effec-
is exponentially limited by the inverse of the free volumetive way. The physical situation corresponds to a two-
[3-7]. dimensional layer. However, the same qualitative features
In a second series of experiments, Nowekal. [8,9] are expected in the one- and two-dimensional versions of the
showed the presence of reversible/irreversible cycles. Thmodel.
beads in an initially loosely compacted state were vibrated Partial analyses of this model have already been reported
for fixed periods with a sequence of increasing vibrationa[10—12. We present here a comprehensive description of the
intensity, causing the density to increase monotonically. Thé&inetics, including the final exponential regime and of the
sequence was then reversed so that the powder was vibratédctuations around the steady stagguilibrium). We first
with decreasing intensity. The density, however, continuegresent the model in Sec. Il. We detail in Sec. Il the specific
to increaseshowing that the initial branch is irreversible. algorithm that we have developed for enhancing the fre-
When the initial sequence of increasing vibration was re-quency of rare events in the late stages of the densification
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process. In Sec. IV we study the densification kinetics. Bywhere®(t), the insertion probability, is the fraction of the
using a gap distribution analysis we derive an expression fosubstrate that is available for the insertion of a new particle.
the time of relaxation towards equilibrium and the form of The presence of a relaxation mechanism, i.e., competing de-
the gap distribution function in the limit of small desorption; sorption and adsorption with an equilibrium constnim-

the results compare very well with the simulation data. Aplies that the system eventually reaches a steady state that
short account of this derivation has been given in RE3). corresponds to an equilibrium configuration of hard particles
In Sec. V, the time-dependent density-density correlatiorwith pe=K®(pep), Where p.y denotes the equilibrium
function is studied in the equilibrium state. The correlationdensity. At equilibrium, the insertion probability is given ex-
function displays two well-separated timescales, correspondactly by

ing to two relaxation steps, and this can be interpreted by a

simple model. In Sec. VI, we show that a faster densification Dedp)=(1-p)exd—p/(1-p)]. ()
can be obtained by changing the adsorption rate during the )
process. Inserting Eq.(2) in Eg. (1) leads to the following expression

for the equilibrium density:

Il. MODEL L, (K)

w
. . . . peq:1+L (K)v (3)

In the adsorption-desorption model, particles are placed in w

a D-dimensional space at randomly selected positions with a . .
constant ratek, . If the trial particle does not overlap any V_VhegyeﬁW(t);]) (lt.he.tLa;mberltl-zv tf#ngtlozplls thet T(OIUtt'ﬁn I(_)fx
previously adsorbed particle, the new particle is accepted. In Y 'f n the 'nl'KO/ iT?( ' ﬁl'sof erlm a eKs € Nalng-
addition, all adsorbed particles are subject to remduat muir Torm, peq ( ). while Jor farge K, peq
sorption at random with a constant rate . The one- —1/In(K). At small values ofK, equilibrium is rapidly ob-

dimensional version of the model, in which the substrate is éamgd, but at large values the densification process is dra-
line and the objects are hard rods, has been solved in sorﬁgat'ca”y slowed.

limiting cases. Wherk_=0, the adsorption is totally irre-

versible and the process corresponds to a one-dimensional lIl. SIMULATION ALGORITHM

(1D) random sequential adsorpti¢RSA) for which the ki-
ngtlcs are known exactI.M4]. Without a reIaxathn mecha— rocess would attempt to randomly insert a new particle at
nism, this process is driven towards a nonequilibrium stat

d the | i Kineti . b laebrai i ixed time intervals. This approach, however, is extremely
and the fong-time KINelics are given by an aigebraic Scaling, o¢fiient at high densities since most attempts to add new
law, p.,— p(t) ~ 1Ak, with p,,=0.747 . . . (when the substrate

: oor particles are unsuccessful after an initial period. We have
IS empty at the beg”?”'”g .Of the pro_chsSNhen k+:Q’ developed a general algorithm that enables us to investigate
starting with any conﬁggraﬂqn of partlcles, one obtains 4% detail the kinetics of the adsorption process at arbitrarily
analy.t|c.al SOIU“E” for. this uniform desorption proc¢ss]. . long times and for arbitrarily large values of the equilibrium
T_h_e limitk_—0", which allows a_small but NONZETO POSSI~ ¢4nstantk. Instead of using a fixed time step, the algorithm
k?'“ty of refarrangement of the particles on the I".]e.' quds 10 35 hased on adsorption or desorptievents In this section
f!na! density equal to_ L. ltis worth nqtmg the f|n|t+e discon- we describe the general features of the algorithm that could
tinuity between the final density of this case (~0") and o 45 gimulate an adsorption-desorption process of arbitrarily

the RSA jamming limit k- =0). Moreover, the final density 4564 particles in any dimension. Later, we detail the meth-
is independent of the initial configuration of particles on theodology for the hard-rod system.

line, whereas the jamming limit for the RSA process depends 1 tota] rate of adsorption and desorption events is
strongly on the initial state of the line. Fkr —0™, accurate
descriptions have_b_een 'obtalnéli),lﬂ. In this case, the._ Riot(t) =@ (1) + p(1)/K. (4
process cleanly divides into two sub-processes. The initial

phase consists of an irreversible adsorption and it is followedrne quiesence, or waiting time, is the time interval between
by an infinite sequence of desorption-adsorption events iRny two successive events that alter the state of the system.
which a rod detaches from the surface and the gap that iset F(7) denote the probability that the waiting time is

created is immediately filled by one or two new rods. Thegreater thanr. Since successive events are considered to be
latter possibility causes the system to evolve continuously tgygependent,

the close-packed state with=1 as [10,11] 1—p(t)

A naive method of simulating the adsorption-desorption

=1/In(t) wheret now represents a rescaled time. For the F(r+A7)=F(7)[1—RpA7+0O(A7?)]. (5)
general case, where both andk_ are nonzero, a complete
solution is not available. Taking the limitA7—0 we obtain
The properties of the adsorption-desorption model depend
only on the ratioK =k, /k_. A large value oK then corre- F(7)=exp— Ri7). (6)
sponds to a small desorption rate. If time is expressed in
units of k!, the densification kinetics is given by A uniformly distributed random number,<0¢;, <1, may be
used to sample a random waiting time consistent with this
q distribution:
p p
gt - PO @ 7= —In(£)/Rey. )
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Once the quiesence time has been selected, the nature of the 5G(h, t)

event is determined stochastically by defining p —H(h—=1)(h—=1)G(h,t)
p(t)/K +2J°c dh'G(h' )= 2G(h.1)
ra(t)= 8 h+1 KT
Riot(t)

H(h—1) fh-1 ) ,
and choosing a second uniformly distributed random num- + Kp(t) Jo dh’G(h".h—=1-h".1),
ber, 0<&,<1. If £,<ry(t) the event at timéis a desorption
and a randomly selected particle is removed from the system. (10)

If £&,>r14(t) the event is an adsorption and a new particle |s
placed randomly in the available surface. We have validated
the method by applying it to the Langmuir equation where®
®=1-pl/pmax @and the kinetics, as well as the isotherm, are,
known exactly. This method is quite general and can apply to
a range of adsorption-desorption processes.

In the simulation, the initial state of the system is an in-
terval of lengthL (measured in rod length®ounded by two
immovable rods centered at positiomg=—1, Xy;1=L
+1. For an arbitrary configuration dfl additional rods, aG(h,h' 1)

whereG(h,h’,t) is the two-gap distribution function associ-
ated with the probability of finding twaeighboringgaps
(separated by one partiglef lengthh andh’, andH(x) is

the Heaviside step functiopH(x)=1 for x>1, H(x)=0
otherwisd. The first two terms on the right-hand side of Eq.
(10) correspond to loss and gain terms due to adsorption
while the remaining two are due to desorption. Similarly, the
time evolution ofG(h,h’,t) is given by

whose centers are located &t;,i=1,... N}, the total =—[H(h—-1)(h—1)

available length is known exactly:o=3N"'max,,—x o

—2,0). At each step of the simulation, the total rate of ad- +H(h'=1)(h'=1)]G(h,h’ 1)

sorption and desorption events is determined frRmL

+N/K. A waiting time is sampled from the exponential ” " "o ” " "

waiting time distribution using Eq.7) and the type of event * fhﬂdh Gh%h%D+ jhfﬂdh G(h.h".0

is decided with Eq(8). If the event is adsorption, a new

particle is placed in the available length. The probability that G(h+h'+11)— EG(h h' 1)

a particular gap is occupied is equal to its available length K T

divided by the total available length,. Thus, a random

numberé; is generated and the position of the particle on the H(h—1) 7ld h'G(h",h—1—h",h' t)

available length ist;L,, which means that the gap between Kp(t) ' Y

particlesj and j+1 is occupied wher¢ is defined by the

following equation H(h'—1) hrildh”G(h h' —1—h" h".1)
Kp(t) | o

-1 J (11)

> max(Xi+1—Xi—2,0<&lLo< >, maxXi.1—X—2,0).

1=0 =0 where G(h,h’,h",t) is the three-gap distribution function.

9 The kinetics of the process is thus given by an infinite hier-
archy of equations involving an infinite set of multi-gap dis-

Note that the adsorption event is uniform and is alwaydribution functions.
accepted. If the event is desorption a particle is selected The quantities of interest can be expressed in terms of
at random and removed from the surface. Note that théntegrals of the one-gap distribution function. In particular,
desorption probability is independent of the length of timethe insertion probabilityb(t) is given by
that the particle has been on the surface. The available line
is updated; it always decreasémcreases following an
adsorption (desorption event. The simulation procedure
thus generates a sequence of configurations
(t1,Nq,Lop,(t2,N,,Lgo), ... and one knows the state of and we have the following sum rules:
the system at an arbitrary time, To insure good statistics,

@(t)zflocdh(h—l)G(h,t), (12

several thousands of independent simulations must be run for t) = ”th ht 13
each value of the desorption rate. We used system lerigths, p()= 0 (h.0), (13
from 400 to 5000.
and
IV. GAP DENSITY APPROACH %
i i ) . 1—p(t)=f dh hG(h,t). (14
The adsorption-desorption model can be described in 0

terms of gap distribution functions. The one-gap distribution
function, G(h,t), represents the density of voids of lengith  [One also has  p(t)G(h,t)=[gdh'G(h,h’,t)
the time evolution oiG(h,t) is given by =[odh’G(h’,h,t) and similar integrals for higher-order
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terms] The steady-state solution of E(LO) is known and 0.90 :
corresponds to the equilibrium hard-rod system with a gap
distribution function given by10,17]]

(=Tt}

p? p ©
Geq(h'p)zl—peXp(_Eh)' 13 0.85 | ]

and all higher-order distribution functions satisfying the fac-
torization property,

Geq(hl,hz, PR ,hn,p) 0.0 | 1/In(t) |
=Gedh1,p)Gedh2,p)- - Geghnip).  (16) '

In order to find a solution for the kinetics of the process,
one must truncate the hierarchy by means of a closure ansatz.
The simplest closure is provided by an adiabéatiean-field
treatment. There, one assumes that, at any depéily the 0.75 & ]
structure of the adsorbate, as characterized by the gap distri-
bution functions, is that of an equilibrium system at density

p(t). / 1

p(t)

/ . .
5 10 15
A. A succession of regimes In(t)

We focus here on the small desorption limik%1). For FIG. 1. Linear-logarithmic plot of the adsorbed density as a
an initially empty line, there are three different successiveunction of time for a large value df (K=5000). The process is
kinetic regimes. The first stage is dominated by adsorptiotharacterized by three slow kinetic regimég: RSA-like regime
events and the process displays an RSA-like behavior, chaivhose final stage is described by & théhavior,(ii) 1/In(t) regime,
acterized by a 1/power law dependence. Fai(t)=0.7,  and(iii) exponential approach towards equilibrium.
adsorption becomes slower and desorption can no longer be . _ L _ 5
ignored, which allows particle rearrangements on the lindVhich is equivalent to a relaxation time given ByIn(K)
and, eventually, insertion of additional particles. The densifor largeK. _ , _
fication mechanism requires the rearrangement of an increas- N Fig. 2(b), the relaxation rate is plotted as a function of
ing number of particles in order to open a hole large enougli: the dashed curve gives the mean-field prediction, Eq.
for the insertion of an additional particle. The process is\19: and open circles correspond to the best exponential fit
similar to what occurs in the limk—0". and the kinetics is to the simulation results. It is evident that the mean-field
dominated by a 1/t behavior[10,11. For large but finite analy;is g_ives a poor estimate of the rela>.<ation rate for large
values ofK, this densification regime continues until the den-: This failure can be understood by noting that the mean-
sity is very close to the equilibriunisteady-statevalue, ~ f1€ld assump;lgn Ifeahds to da f(r}?ralgtgrlstlc time gor th?l rear-
peq(K). In the final regime, the desorption term becomesiangement of® of the orderK/In(k)*, i.e., much smaller
comparable to the adsorption term, and an exponential aﬁhan K, the characteristic time for desorption. Since in the

proach to equilibrium is observed. Figure 1 illustrates the2PSence of surface diffusion process, significant rearrange-
three successive regimes. ment can only occur on a timescale longer tifatine system

is unable to adjust rapidly enough in order to change signifi-
cantly the available surface function on a timescale of order
K/In(K)2. In Fig. 3, we display the insertion probability,
The exponential regime is illustrated in Figia2 In an  ®(p), for several large values ¢; it is worth noting thatb
adiabatic (mean-field treatment the insertion probability, first follows the RSA curve until it reaches a value close to
®(t), satisfies an equation similar to E@) with p(t) in  the equilibrium one at which point it plateaus and evolves
place of peq. Denoting op(t)=p(t)—p.., with p.  very weakly towards equilibrium. The process clearly devi-
=peq(K), one obtains from Eq(1), at first order in density, ates from the adiabatic description in which the insertion
q probably is given, at all densities, by the equilibrium curve,
= Sy— — 2 D(p).
dt&p Pur(K)dp+O(op7) 9 e/(Ve now turn to a description in terms of the gap distri-
_ bution approach. To obtain the leading term in the exponen-
with tial approach towards equilibrium, whéhis very large(but
) finite), we assume that, as for the steady stateequilib-
Ty (K)= [1+Lw(K)] (1g  fum), [G(h.t)|~exp(-TIh), with TI~InK~(1-p)~* [see
MF K ’ Egs.(15) and(3), whenK is very largd. As a consequence,
if one definesp,(t)=/""'G(h,t)dh and ®,(t)=/""(h
=In(K)?/K when K is large, (19 —-1)G(h,t)dh, thenp,~®,~K™", so that if one looks for

V. DENSIFICATION KINETICS (AT CONSTANT K>1) 0.70 0

B. Exponential approach to equilibrium
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FIG. 3. The insertion probabilitgp as a function of density
for various large values df (K=100,500,1000,5000). The dashed
curve corresponds to a process without desorptR8BA process
-4.0 and the dotted curve corresponds to the equilibrium insertion prob-
ability, Eq. (2).
60 and
=
z dInG(h,h’,p)
Ah,h)=p,———— (21
dp
-8.0 Po
After inserting Eq.(20) in Eq. (10) A(h) can be rewritten for
0<h<1 as
-100
2— 2P, [+ ,
 Yath)= f dh'e P=(" MA(1+hY), (22
K K Jn
-12.0 ‘
3.0 5.0 9.0

In(K)m where P..=p../(1—p.) is the dimensionless equilibrium
pressure fop.,= peq and
FIG. 2. (a) Final exponential approach of the densityto its

equilibrium valuep, for two large values oK. (b) Relaxation rate
for the approach to equilibriuhi versusk. Upper curve: prediction
from mean-field approximation, Eq19). Dotted curve: leading
term of Eq.(32). Full curve, Eq.(A17) . Open circles: best expo- From Egs.(1) and(12), one obtains
nential fit to the numerical simulations.

d
y=KI'=—=K 5 p(t)/ 8p(1)] .. (23)

_ o o o _ y=1—PiJ dhhe P="A(1+h) (24)
the dominant behavior in K/, it is sufficient to consider the 0

first intervals inh. As in the adiabatic approximation, one , .

can expand the gap densities in power&i(t) and keep vyhereas the sum rules in Eq4.3) and (14) give, respec-

only the linear term which gives rise to the exponential de-ively,

cay. In the final regime, where the density is close to the "

steady state, we first assume that the deviation of the gap pwf dhe P="A(h)=1 (25)

distribution function from its equilibrium formG(h,t) 0

=G(h,t) =G¢4(h), can be expressed as an expansion in .

Sp(t) where only the first term is kept. Let us then denote —Pxf dhhe P-hA(h)=1. (26)
0

dInG(h,p)

A(h)=p. P

(200 When integrating the two sides of Eq€2) between 0 and
Pos 1, one obtains
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1 an exponential fit to the simulation data, whereas the mean-
(2—7)=2P§>j dhhe P-"A(1+h)+O(1K). (27)  field prediction fails completelydashed curve[the dotted
0 curve corresponds to the first term of the right hand-side of
Combining Eq.(24) with Eq. (27) yields y=0(1/K). Thus, Eq. (32)]
the relaxation ratd” goes essentially asK? instead of the
1/K dominant behavior predicted by the mean-field treat- VI. FLUCTUATIONS AROUND EQUILIBRIUM
ment. In order to have a more explicit expression Joand
I', it is necessary to calculate the integral on the right-hancéi
side of Eq.(24) to O(1/K?)

For times much larger than the relaxation time, the den-
ty no longer evolveson averagg but fluctuates around its
equilibrium value. Note that in this regime, the fluctuation-

P27 1 dissipation theorem and the time translational invariance are
(2— 7,)| R f e P=PA(1+ h)+A(1)” both valid. We have calculated the time-dependent correla-
KlJo tion function C(t) of the density fluctuationsgp(t) = p(t)

—pw, around the equilibrium state. Starting from the- 2

3
=2-2| y— Efl(thl)e PhA(2+h) |+0O(1/K?) time correlation function,
K Jo '

(29 C(t/+t,t,):<p(t,+t)P(t:)Z_<p(t"+t3><p(t’)>
which leads to (p(t)2) —(p(t')) -

we have numerically verified that wheti>1M1", C(t’
+t,t') becomes time translationnally invariant, i.€(t’
+1t,t")=C(t). (Conversely, when ¥t’ <1/T", one observes
aging phenomen@l7], but we postpone the discussion of
this phenomena to a future publicatipBecause of the very
long relaxation time, we found that the calculation of the
correlation function is more efficient by using EQ3) in-
stead of taking the usual time average on a single system
[18]. Results from the simulation are shown in Fig. 4 for two
large values oK. At short and intermediate times, the decay
—y of C(t) is nonexponential, whereas at long times the kinetics
( h—1+ T) A(h)=—-(h—-1) follows an exponential decay. The two regimes, or relaxation
steps, can be interpreted as follows: the first consists of a
J‘h—l “fast” adsorption-desorption process without appreciable
J’_

yK=2Pm[A(O)+ P.A(1)— Pifl(th 1)e P="A(2+h)
0

+0(1/K). (29

An explicit expression foryK, Eq. (29) thus requires the
knowledge of the gap distribution function foeh>1. The
kinetic equation for the gap distribution function whén
>1 is then rewritten by inserting Eq&20) and (21) in Eq.
(10), which gives

dh’A(h’,h—1-h") densification of the system, whereas the second corresponds
to the linear-response regime and, as predicted by Onsager’s
2P, (= ) regression hypothesis, it shows the same final exponential
K dhe P-(""MA(L+h). dependence as the final approachp¢f) towardsp., in the
h-1 densification process. In this second relaxation stft)
(300 ~e twherel is given by Eqs(32) and(A17).
Close to equilibrium and for large valueskfthe adsorp-
Combining Eq.(29) and Eq.(30) for h=1, one finally gets  tjon and desorption events can be considered as spatially
L uncorrelated, and the system can be represented as a set of
yK=2Pm[A(O)— Pij dhhe P=NA(2+h) |+ O(1/K). mdepenc_ient gaps in which a particle is adsorbed or not. This
0 assumption does not account for rearrangements that occur at
(31 long times, but is valid for short times. When a particle is
) _— adsorbed, the gap is characterized by the distribugigth),
Since the system evolves close to equilibrium, we furthegyhich is the distribution probability of finding a particle such

assume that the factorization property for the two-gap distrihe total length of right and left gap is equalhipi.e.,
bution function is valid toO(1/K), i.e., A(h,h’)=A(h)

0

J’_

+A(h")+O(1/K) [16]. Equations(30) and (22) then be- 1 (h

come a closed set of equations fath) to O(1/K). The Geq(h)= —f dh'Ge(h")Geq(h—h")

solution is given in the Appendix, as well as the explicit p=Jo

expression fol’(K) = y/K, Eq.(A17). As an illustration, the =p..P2hexp —P.h). (34)

leading terms of"(K) in powers of InK) are obtained as
Once the particle has desorbed, the gap is characterized by

rootn K)® 4N K)? RGULNPN 5 the distributionGeq(h+1). The two distributions are calcu-
7 ke N K2 K2 ﬁ . (32 lated at equilibrium and their ratio is given exactly by:
The prediction of Eq(A17), shown as the full curve in Fig. Geg(h+1) 1

2(b), gives a good agreement with the results obtained from Jeq(h) T Kh (35
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1 For a given gap of lengthh(+ 1), the (unnormalizedl corre-

@ 1 lation function of the density fluctuatior@,(t) due to the
0ol two-state stochastic process is given[BQ]
o Euty= 1K +h 3
o n(t)= mexd—( +h)t]. (37

0 é 15 1!5 Zb Zg 30
' Assuming that the adsorption-desorption events giving rise
to the two-state process only seldom affect simultaneously

two neighboring particles, one can write thenormalized

|
-

Eos g correlation function as a superposition of correlation func-
£, tions occurring in parallel in the different gaps, weighted by
the distributiongq(h), i.e.,
S0 2000 4000 6000 ~ » ~
t Cshort= 0 dhgeq(h)ch(t) (38)
2
pP5 exp(—t/K)
= o (39
K (t+P,)
05 00 Im sen 0 50 6000 At equilibrium, the variance of the density fluctuations can
t be calculated exactlf21],
k 1 ((8p)%)=pa(1—p..), (40)
)
0.95 | so that, the normalized correlation functi@(t) at short
g o9t times, Cgphort, Can be written as

S
=

0.85 - .

= |
0.8

0.8
T ot P2 exp—t/K)
0 5 10 15 20 25 30 ~

A short K(l_poc)z (t+P.)

: (41)

087 which reduces to a power law,tliwhen InK)<t<K. This

result is equivalent to the Inf-behavior already predicted
along similar lines similar by Kolaet al.[19]. The insets in
Figs. 4a) and 4b) illustrate the excellent agreement between
Eg. (39) and the simulation data.

It is worth noting that the 1/behavior is reminiscent of
the pure RSA asymptotic regime, where it occurs as a con-
sequence of the filling of small isolated pieces of the avail-
able fraction of the line, whose lengths go to zero when
—oo. With similar arguments, one thus expects to have in
higher dimensions & P behavior, leading to aw =P
power-law dependence for the power spectrum. In particular,
0 2000 4000 6000 8000 10000 12000 14000 this predicts a power law Y2 for D=2, which is compat-

t ible with the experimental data in vibrated granular media

FIG. 4. Equilibrium density-density correlation functig®t) [9]. In dimensions higher. than 1,.our preqiction differs from
versus time fofa) K =500 and(b) K =1000. The inset in the upper that of Kolanet al. [19] since their analysis leads to acil/
right corner displays the first step in the decay of the correlatiorlependence in the power spectrum. A numerical study of the
function (full curve) as well as the predicted short-time formula, two-dimensional version of the adsorption-desorption model
Cehor(t), Eq.(41) (dashed curve The other inset shows the expo- should settle this point.
nential decay ofc(t) at long times on a logarithmic-linear plot.

cH
In(C(t)
]

0.4 -

5000 10000
t

0.2 -

VII. DENSIFICATION REGIME AND MULTISTEP
For a given gap of lengthh(+1), we have a two-state PROCESS

(particle-hole stochastic process in which the rates, associ- The very slow-exponential approach to equilibrium with
e ooy o o < s s (0= O(IIC) hen K i very large mies b (o)
eﬁual to gep y gap 98P IS creases wittp when p is sufficiently large(see Sec. VB
and the Appendix Since in the first(RSA-like) regime
®(p) decreases, there always exists a dengity where
hK 36 07(I)(p)/ﬁp|pm=0. Figure 5 displays a log-log plot d as a
1+hK"’ (36) function of time for various values df. One noticegi) that

P(h)=
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K=100 0.82 |-

K=500

K=1000

In[®(t)]

K=5000

-10.0 L . .
2.0 4.0 6.0 8.0

()

. . - . 072 %0 200 400 600 800 1000
FIG. 5. Log-log plot of the insertion probabilig as a function t

of time for various large values df (K=100,500,1000,5000).
Note that forK >100, ® displays a minimum that is smaller than 07 0 000 7500
the equilibrium valugdotted lines. t

FIG. 7. Density increase over 1500 time units for a process with
pm is an increasing function df and (ii) that the minimum 3 single value oK (K=1000) and for multistep process in which
of @ is always very close but smaller than the equilibriumthe sequence df is shown on a linear-logarithmic plot in the inset
value,cI)eq(K), and smaller tham/K, which is due to the (after t=1000, K stays constaint Note the large enhancement of
fact that the density is an increasing function of time. packing efficiency in the latter process. This effect is absent in the

In Fig. 6, the density is plotted as a function of time for adiabatic approximation where the density is a monotonically in-
different values oK. The curves on the left part of the figure creasing function oK.
correspond to an adiabatic process where the available sur-
face function is replaced by the equilibrium formula, E2), has a higher density than the system witl1000 for 4
and which corresponds to a process where rapid diffusion o0& |n(t)<8. The existence of a minimum i@ is a sufficient
the substrate allows an instantaneous equilibration after eagyndition for this phenomenon. It follows thér a given
desorption and adsorption event. For all valueskofthe finjte time the densification can be made more efficient by
adiabatic process is much faster than the correspondlngnanging the desorption rate during the process. Figure 7
adsorption-desorption model process. Moreover, for an adiasompares the densities obtained by using either a single
batic process, the density is at all times always a monotoniyg|ye ofK = 1000 or a sequence of varyirkg starting from
cally increasing function oK. For the adsorption-desorption 1000 att=0, passing through a minimum, and finishing at
model, on the other hand, the densitynist always mono- ihe same valu = 1000 whent=1000. One clearly ob-
tonic in K. In Fig. 6, for example, the system with=500  gerves that a larger final density is reached with the multistep
process. Such a phenomenon, which is also the source of the
0.90 ‘ , ‘ ‘ ‘ ‘ i reversible-irreversible cycles observed by Nowvetlal. [9],
5000 has been already observed and quantitatively analyzed in an
irreversible adsorption modgl5]. However, the determina-
tion of the optimum densification strategy, which has signifi-

A -..1o00 cant applications to vibratory compaction of granular mate-
. rials, is still an open problem.
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APPENDIX: SOLUTION FOR THE GAP DISTRIBUTION
FIG. 6. Linear-log plot of the density versus time for different FUNCTION IN THE LINEAR RESPONSE REGION
values ofK. The left curves correspond to the adiabatic process.
The right curves correspond to the adsorption-desorption model. FOr convenience, we introduce the notat®h) =A(h)
Notice that in the latter case the curves for different valuekof —1, B(h,h’)=A(h,h’)—2, etc. For Bsh=<1, by taking
always cross, a phenomenon absent in the adiabatic process.  into account thay=0(1/K), Eq.(22) can be reexpressed as
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. P. 1 e where b and ¢ are constants and=1h>2/K. The corre-
B(hje ™"—B(1)—= Pocjo dh’e”"="B(1+h’) sponding solution foB(h) is then
-P.h
+O(e /K), (Al) B(h):b(l_Pooh)+C e*Pw(l*h)

and for larger gaps, Eq30) can be rewritten foh=0, as
eP-h’

h
+(1—Pwh)e*'°xfodh' . (A9)

2 h
h+ R)B(1+h)=f dh’'B(h’,h—h") h'+2/K
0
op " It is important to stress that the above equations give the
+_°°eow deh’e‘Pwh/B(2+ h') solution only whenh=2/K. To satisfy Eqs(Al) and (A3)
K h when h~2/K or smaller, one must include iB(1+h) an
2 additional component that is@(1/K) whenh>2/K and is
+O(LKS. (A2) non negligible only wherh~2/K. The full solution for 0

Assuming that the factorization property is valid to a =h=<1 is then obtained as

O(1K), i.e., (1—P_h)e P=(1-M

B(1+h)=b(2—P.h)+c| —

C(h,h") ) P..(h+2/K)
B(h,h")=B(h)+B(h")+ K +0O(1/K?), (A3)
h P.h’ d
—Ps ’
with 0<h=<1, andO(1/K) or O(1/K?) designate functions +(2-Ph)e fo dh h' +2/K + K(h+2/K)
that are uniformly of order ¥ or 1/K? on the interva[0,1],
we can derive from EqA2) +O(1/K). (A10)
2 h-1 ) It is easy to verify that Eq(A9) is still the full solution to a
h+ B(1+h)—2j0 dh’B(h’) O(1/K) for 0<h=<1 and that, from Eq(A5), the solution
for B(2+h), O<h=<1, is equal to
1[ rh
:E“ dh’'C(h’,h—h") 1
0 - = _
B(2+h) a+h B(2)+bh(4—-P_h)
+2ij dh’e P=(""MB(2+h’) [+ O(1/K?), c
" ~ 5| (3=Puhje P70
(A4) ”
, gP=h’
and +[2—4Pwh+(th)2]e’P°°fh
Lin 0o h'+2/K
(1+h)B(2+ h)—2f dh'B(h")=0(1/K). (A5)
° +O(1/K)] . (A11)

Whenh>2/K, Eq. (A4) simplifies to
1 The constant$, c, d, andB(2) are determined by the vari-
hB(1+h)— Zf dh’B(h’)=0(1/K). (A6)  oussum rules as well as by the condition, which comes from
0 the structure of the hierarchy of kinetic equations, théh)

o ) . ] is a piecewise continuous function, namely,
Deriving Eq.(A6) with respect tch and inserting the result

in Eq. (A1), one gets the following differential equation, c d
B(1)=2b- §+ =

2

1 d? d
P—ﬁ[hB(l+ h) 1= gphB(1+h)]+2[hB(1+h)] =b(1-P,)+c[1+(1—P.)e "=E{(P.)]+O(1/K),
(A12)

=0(1/K) (A7)
1
with 1=h>2/K, whose solution is B(2)=b(2-P.)+c| — P—+1(2—Poc)efp°°Ei(Poc)

(1-P_h)e P=(1=N +0(1K), (A13)

B(1+h)=b(2—P.h)+c

P.(h+2/K
( ) whereE;(x) =e*/x+ e[ dt exp(—t)/(x—t)2

P.h’' The result can be expressed as

. (A8)

h
+(2- Pwh)efp”ﬁf dh’
0

h' +2/K B(0)=b=P.+1 (A14)
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1-U,
B(1)=(P.+1)| —(P,—1)+2(P,+1) TK?= yK=2P..(1+P.)" 55~ (A17)
(1-P.@)[1+(1—P.) /] with
X
1+(1-P)(P]+ D) =P (2—P,) DD
v v DI+ D7 —2P,DID”
(A15) U,.= — —. (A18)
(1-P,.®)(1-P.P))
(P.+1)
B(2)=(P.+1) Z—Pm+2T WhenP..—, one has
(1-PP))[P,—1+P.(2—P.)D" 1 1 2 2
1Eo - 'j —|, Pi=|1-—+—+0| —]||, (A19)
1+(1-P)(®T+ D7) =P (2—P.,)PTD; P P. PZ P2/ |
(A16) ]
, . b 1 1 2 2
where we have introduced the notatidn =e™ "~E;(P..) (I)i“’:P— 1+P—+—2+O — (A20)
and ®7=eP~E,(P..) with E,(x)=/7dte *Yt. The values =| > »

of c andd can be trivially derived from the above equations.
The relaxation ratd’= yK can be obtained by inserting Inserting Egs.(A19) and (A20) in Egs. (A18) and (A17)
the above solution into Eq29), which leads to leads to Eq(32).
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